Contribution of feedback and feedforward strategies to locomotor adaptations.
نویسندگان
چکیده
The aim of this study was to examine the strategies used by human subjects to adapt their walking pattern to a velocity-dependent resistance applied against hip and knee movements. Subjects first walked on a treadmill with their lower limbs strapped to an exoskeletal robotic gait orthosis with no resistance against leg motions (null condition). Afterward, a velocity-dependent resistance was applied against left hip and knee movements (force condition). Catch trials were interspersed throughout the experiment to track the development of adaptive changes in the walking pattern. After 188 steps in the force condition, subjects continued to step in the null condition for another 100 steps (washout period). Leg muscle activity and joint kinematics were recorded and analyzed. The adaptive modifications in the locomotor pattern suggest the involvement of both feedback and feedforward control strategies. Feedback-driven adaptations were reflected in increases in rectus femoris and tibialis anterior activity during swing, which occurred immediately, only in the presence of resistance, and not during the catch trials. Locomotor adaptations involving feedforward strategies were reflected in enhanced pre-swing activity in the biceps femoris and medial hamstrings muscles, which required experience and persisted in the catch trials. During washout subjects showed a gradual deadaptation of locomotor activity to control levels. In summary, adaptive changes in the walking pattern were driven by both feedback and feedforward adjustments in the walking pattern appropriate for overcoming the effects of resistance.
منابع مشابه
Feedback and feedforward locomotor adaptations to ankle-foot load in people with incomplete spinal cord injury.
Humans with spinal cord injury (SCI) modulate locomotor output in response to limb load. Understanding the neural control mechanisms responsible for locomotor adaptation could provide a framework for selecting effective interventions. We quantified feedback and feedforward locomotor adaptations to limb load modulations in people with incomplete SCI. While subjects airstepped (stepping performed...
متن کاملCerebellar contributions to locomotor adaptations during splitbelt treadmill walking.
Locomotor adaptability ranges from the simple and fast-acting to the complex and long-lasting and is a requirement for successful mobility in an unpredictable environment. Several neural structures, including the spinal cord, brainstem, cerebellum, and motor cortex, have been implicated in the control of various types of locomotor adaptation. However, it is not known which structures control wh...
متن کاملThe Electromyographic Feedback and Feedforward Activity of Selected Lower Extremity Muscles During Toe-in Landing in Female Athletes
Background: Positioning the legs in performing spike technique significantly contributes to the development and prevention of lower limb injuries. The present study aimed to evaluate and compare the feedback and feedforward activaties of selected lower limb muscles during triple jump spike with and without toe-in landing in female volleyball players. Methods: In this controlled-laboratory stud...
متن کاملFeedforward and Feedback Function of Selected Lower Limb Muscles Following Plyometric Exercises and Cryotherapy
Purpose: Despite the widespread use of cryotherapy in sports fields there is a lack of certain evidence of its impact of it on muscle activation especially following fatigue-induced exercise. This study aimed to assess the impact of cryotherapy alone and after plyometric exercises on knee muscle activation during the drop jump task. Method: 35 active female subjects (mean age of 22.74±2.10, m...
متن کاملGenetic Feedforward-Feedback Controller for Functional Electrical Stimulation Control of Elbow Joint Angle
Background: Functional electrical stimulation (FES) is the most commonly used system for restoring functions after spinal cord injury (SCI). Objective: In this study we investigated feedback PID and feedforward-feedback P-PID controllers for regulating the elbow joint angle. Methods: The controllers were tuned based on a nonlinear muculoskeletal model containing two links, one joint with one de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 95 2 شماره
صفحات -
تاریخ انتشار 2006